Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Baryogenesis in a Parity Solution to the Strong CP Problem (2210.16207v2)

Published 28 Oct 2022 in hep-ph and astro-ph.CO

Abstract: Space-time parity can solve the strong CP problem and introduces a spontaneously broken $SU(2)_R$ gauge symmetry. We investigate the possibility of baryogenesis from a first-order $SU(2)_R$ phase transition similar to electroweak baryogenesis. We consider a model with the minimal Higgs content, for which the strong CP problem is indeed solved without introducing extra symmetry beyond parity. Although the parity symmetry seems to forbid the $SU(2)_R$ anomaly of the $B-L$ symmetry, the structure of the fermion masses can allow for the $SU(2)_R$ sphaleron process to produce non-zero $B-L$ asymmetry of Standard Model particles so that the wash out by the $SU(2)_L$ sphaleron process is avoided. The setup predicts a new hyper-charged fermion whose mass is correlated with the $SU(2)_R$ symmetry breaking scale and hence with the $SU(2)_R$ gauge boson mass, and depending on the origin of CP violation, with an electron electric dipole moment. In a setup where CP violation and the first-order phase transition are assisted by a singlet scalar field, the singlet can be searched for at future colliders.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (106)
  1. J. S. Bell and R. Jackiw, “A PCAC puzzle: π0→γ⁢γ→superscript𝜋0𝛾𝛾\pi^{0}\to\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ in the σ𝜎\sigmaitalic_σ model,” Nuovo Cim. A 60 (1969) 47–61.
  2. S. L. Adler, “Axial vector vertex in spinor electrodynamics,” Phys. Rev. 177 (1969) 2426–2438.
  3. G. ’t Hooft, “Symmetry Breaking Through Bell-Jackiw Anomalies,” Phys. Rev. Lett. 37 (1976) 8–11.
  4. G. ’t Hooft, “Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle,” Phys. Rev. D 14 (1976) 3432–3450. [Erratum: Phys.Rev.D 18, 2199 (1978)].
  5. M. Beg and H.-S. Tsao, “Strong P, T Noninvariances in a Superweak Theory,” Phys. Rev. Lett. 41 (1978) 278.
  6. R. N. Mohapatra and G. Senjanovic, “Natural Suppression of Strong p and t Noninvariance,” Phys. Lett. B 79 (1978) 283–286.
  7. K. Babu and R. N. Mohapatra, “CP Violation in Seesaw Models of Quark Masses,” Phys. Rev. Lett. 62 (1989) 1079.
  8. K. Babu and R. N. Mohapatra, “A Solution to the Strong CP Problem Without an Axion,” Phys. Rev. D 41 (1990) 1286.
  9. R. Kuchimanchi, “Solution to the strong CP problem: Supersymmetry with parity,” Phys. Rev. Lett. 76 (1996) 3486–3489, arXiv:hep-ph/9511376.
  10. R. N. Mohapatra and A. Rasin, “Simple supersymmetric solution to the strong CP problem,” Phys. Rev. Lett. 76 (1996) 3490–3493, arXiv:hep-ph/9511391.
  11. L. J. Hall and K. Harigaya, “Implications of Higgs Discovery for the Strong CP Problem and Unification,” JHEP 10 (2018) 130, arXiv:1803.08119 [hep-ph].
  12. J. de Vries, P. Draper, and H. H. Patel, “Do Minimal Parity Solutions to the Strong C⁢P𝐶𝑃CPitalic_C italic_P Problem Work?,” arXiv:2109.01630 [hep-ph].
  13. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe,” Phys. Lett. 155B (1985) 36.
  14. A. I. Bochkarev and M. E. Shaposhnikov, “Electroweak Production of Baryon Asymmetry and Upper Bounds on the Higgs and Top Masses,” Mod. Phys. Lett. A 2 (1987) 417.
  15. G. W. Anderson and L. J. Hall, “The Electroweak phase transition and baryogenesis,” Phys. Rev. D 45 (1992) 2685–2698.
  16. J. R. Espinosa and M. Quiros, “The Electroweak phase transition with a singlet,” Phys. Lett. B 305 (1993) 98–105, arXiv:hep-ph/9301285.
  17. J. R. Espinosa, M. Quiros, and F. Zwirner, “On the electroweak phase transition in the minimal supersymmetric Standard Model,” Phys. Lett. B 307 (1993) 106–115, arXiv:hep-ph/9303317.
  18. D. Bodeker, P. John, M. Laine, and M. G. Schmidt, “The Two loop MSSM finite temperature effective potential with stop condensation,” Nucl. Phys. B 497 (1997) 387–414, arXiv:hep-ph/9612364.
  19. M. Carena, M. Quiros, and C. E. M. Wagner, “Opening the window for electroweak baryogenesis,” Phys. Lett. B 380 (1996) 81–91, arXiv:hep-ph/9603420.
  20. J. R. Espinosa, “Dominant two loop corrections to the MSSM finite temperature effective potential,” Nucl. Phys. B 475 (1996) 273–292, arXiv:hep-ph/9604320.
  21. M. Carena, M. Quiros, and C. E. M. Wagner, “Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron,” Nucl. Phys. B 524 (1998) 3–22, arXiv:hep-ph/9710401.
  22. J. M. Cline and G. D. Moore, “Supersymmetric electroweak phase transition: Baryogenesis versus experimental constraints,” Phys. Rev. Lett. 81 (1998) 3315–3318, arXiv:hep-ph/9806354.
  23. M. Pietroni, “The Electroweak phase transition in a nonminimal supersymmetric model,” Nucl. Phys. B 402 (1993) 27–45, arXiv:hep-ph/9207227.
  24. J. Choi and R. R. Volkas, “Real Higgs singlet and the electroweak phase transition in the Standard Model,” Phys. Lett. B317 (1993) 385–391, arXiv:hep-ph/9308234 [hep-ph].
  25. N. Turok and J. Zadrozny, “Phase transitions in the two doublet model,” Nucl. Phys. B 369 (1992) 729–742.
  26. J. M. Cline, K. Kainulainen, and A. P. Vischer, “Dynamics of two Higgs doublet CP violation and baryogenesis at the electroweak phase transition,” Phys. Rev. D 54 (1996) 2451–2472, arXiv:hep-ph/9506284.
  27. J. M. Cline and P.-A. Lemieux, “Electroweak phase transition in two Higgs doublet models,” Phys. Rev. D 55 (1997) 3873–3881, arXiv:hep-ph/9609240.
  28. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, and G. Shaughnessy, “Complex Singlet Extension of the Standard Model,” Phys. Rev. D 79 (2009) 015018, arXiv:0811.0393 [hep-ph].
  29. S. Das, P. J. Fox, A. Kumar, and N. Weiner, “The Dark Side of the Electroweak Phase Transition,” JHEP 11 (2010) 108, arXiv:0910.1262 [hep-ph].
  30. K. Harigaya and I. R. Wang, “First-Order Electroweak Phase Transition and Baryogenesis from a Naturally Light Singlet Scalar,” arXiv:2207.02867 [hep-ph].
  31. M. Dine, P. Huet, R. L. Singleton, Jr, and L. Susskind, “Creating the baryon asymmetry at the electroweak phase transition,” Phys. Lett. B 257 (1991) 351–356.
  32. V. Brdar, L. Graf, A. J. Helmboldt, and X.-J. Xu, “Gravitational Waves as a Probe of Left-Right Symmetry Breaking,” JCAP 12 (2019) 027, arXiv:1909.02018 [hep-ph].
  33. K. Fujikura, K. Harigaya, Y. Nakai, and I. R. Wang, “Electroweak-like baryogenesis with new chiral matter,” JHEP 07 (2021) 224, arXiv:2103.05005 [hep-ph]. [Erratum: JHEP 12, 192 (2021), Erratum: JHEP 1, 156 (2022), Erratum: JHEP 01, 156 (2022)].
  34. J. Shu, T. M. P. Tait, and C. E. M. Wagner, “Baryogenesis from an Earlier Phase Transition,” Phys. Rev. D 75 (2007) 063510, arXiv:hep-ph/0610375.
  35. J. Shelton and K. M. Zurek, “Darkogenesis: A baryon asymmetry from the dark matter sector,” Phys. Rev. D 82 (2010) 123512, arXiv:1008.1997 [hep-ph].
  36. H. Davoudiasl, P. P. Giardino, and C. Zhang, “Higgs-like boson at 750 GeV and genesis of baryons,” Phys. Rev. D 94 (2016) no. 1, 015006, arXiv:1605.00037 [hep-ph].
  37. B. Fornal, Y. Shirman, T. M. P. Tait, and J. R. West, “Asymmetric dark matter and baryogenesis from S⁢U⁢(2)ℓ𝑆𝑈subscript2ℓSU(2)_{\ell}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT,” Phys. Rev. D 96 (2017) no. 3, 035001, arXiv:1703.00199 [hep-ph].
  38. E. Hall, T. Konstandin, R. McGehee, H. Murayama, and G. Servant, “Baryogenesis From a Dark First-Order Phase Transition,” JHEP 04 (2020) 042, arXiv:1910.08068 [hep-ph].
  39. V. Agrawal, S. M. Barr, J. F. Donoghue, and D. Seckel, “Viable range of the mass scale of the standard model,” Phys. Rev. D 57 (1998) 5480–5492, arXiv:hep-ph/9707380.
  40. L. J. Hall, D. Pinner, and J. T. Ruderman, “The Weak Scale from BBN,” JHEP 12 (2014) 134, arXiv:1409.0551 [hep-ph].
  41. G. D’Amico, A. Strumia, A. Urbano, and W. Xue, “Direct anthropic bound on the weak scale from supernovæ explosions,” Phys. Rev. D 100 (2019) no. 8, 083013, arXiv:1906.00986 [astro-ph.HE].
  42. R. Kawasaki, T. Morozumi, and H. Umeeda, “Quark sector CP violation of the universal seesaw model,” Phys. Rev. D 88 (2013) 033019, arXiv:1306.5080 [hep-ph].
  43. K. S. Babu, B. Dutta, and R. N. Mohapatra, “A theory of R(D*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT, D) anomaly with right-handed currents,” JHEP 01 (2019) 168, arXiv:1811.04496 [hep-ph].
  44. N. Craig, I. Garcia Garcia, G. Koszegi, and A. McCune, “P not PQ,” JHEP 09 (2021) 130, arXiv:2012.13416 [hep-ph].
  45. T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C 7902131 (1979) 95–99.
  46. M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,” Conf. Proc. C790927 (1979) 315–321, arXiv:1306.4669 [hep-th].
  47. P. Minkowski, “μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?,” Phys. Lett. 67B (1977) 421–428.
  48. R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912. [,231(1979)].
  49. M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt, “Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α𝛼\alphaitalic_α forest data,” Phys. Rev. D 88 (2013) 043502, arXiv:1306.2314 [astro-ph.CO].
  50. N. Palanque-Delabrouille, C. Yèche, N. Schöneberg, J. Lesgourgues, M. Walther, S. Chabanier, and E. Armengaud, “Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α𝛼\alphaitalic_α and Planck full-survey data,” JCAP 04 (2020) 038, arXiv:1911.09073 [astro-ph.CO].
  51. A. Garzilli, A. Magalich, O. Ruchayskiy, and A. Boyarsky, “How to constrain warm dark matter with the Lyman-α𝛼\alphaitalic_α forest,” Mon. Not. Roy. Astron. Soc. 502 (2021) no. 2, 2356–2363, arXiv:1912.09397 [astro-ph.CO].
  52. F. Bezrukov, H. Hettmansperger, and M. Lindner, “keV sterile neutrino Dark Matter in gauge extensions of the Standard Model,” Phys. Rev. D 81 (2010) 085032, arXiv:0912.4415 [hep-ph].
  53. A. Greljo, D. J. Robinson, B. Shakya, and J. Zupan, “R(D(+){}^{(+)}start_FLOATSUPERSCRIPT ( + ) end_FLOATSUPERSCRIPT) from W+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT and right-handed neutrinos,” JHEP 09 (2018) 169, arXiv:1804.04642 [hep-ph].
  54. J. A. Dror, D. Dunsky, L. J. Hall, and K. Harigaya, “Sterile Neutrino Dark Matter in Left-Right Theories,” JHEP 07 (2020) 168, arXiv:2004.09511 [hep-ph].
  55. J. Carrasco-Martinez, D. I. Dunsky, L. J. Hall, and K. Harigaya, “Leptogenesis in Parity Solutions to the Strong CP Problem and Standard Model Parameters,” arXiv:2307.15731 [hep-ph].
  56. P. S. B. Dev and A. Pilaftsis, “Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models,” Phys. Rev. D 86 (2012) 113001, arXiv:1209.4051 [hep-ph].
  57. J. A. Harvey and M. S. Turner, “Cosmological baryon and lepton number in the presence of electroweak fermion number violation,” Phys. Rev. D 42 (1990) 3344–3349.
  58. D. Bödeker and D. Schröder, “Equilibration of right-handed electrons,” JCAP 05 (2019) 010, arXiv:1902.07220 [hep-ph].
  59. K. Harigaya and I. R. Wang, “Axiogenesis from S⁢U⁢(2)R𝑆𝑈subscript2𝑅SU(2)_{R}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT phase transition,” JHEP 10 (2021) 022, arXiv:2107.09679 [hep-ph]. [Erratum: JHEP 12, 193 (2021)].
  60. B. A. Campbell, S. Davidson, J. R. Ellis, and K. A. Olive, “On the baryon, lepton flavor and right-handed electron asymmetries of the universe,” Phys. Lett. B 297 (1992) 118–124, arXiv:hep-ph/9302221.
  61. J. M. Cline, K. Kainulainen, and K. A. Olive, “On the erasure and regeneration of the primordial baryon asymmetry by sphalerons,” Phys. Rev. Lett. 71 (1993) 2372–2375, arXiv:hep-ph/9304321.
  62. J. M. Cline, K. Kainulainen, and K. A. Olive, “Protecting the primordial baryon asymmetry from erasure by sphalerons,” Phys. Rev. D 49 (1994) 6394–6409, arXiv:hep-ph/9401208.
  63. M. Fukugita and T. Yanagida, “Resurrection of grand unified theory baryogenesis,” Phys. Rev. Lett. 89 (2002) 131602, arXiv:hep-ph/0203194.
  64. V. Domcke, K. Kamada, K. Mukaida, K. Schmitz, and M. Yamada, “Wash-In Leptogenesis,” Phys. Rev. Lett. 126 (2021) no. 20, 201802, arXiv:2011.09347 [hep-ph].
  65. R. T. Co and K. Harigaya, “Axiogenesis,” Phys. Rev. Lett. 124 (2020) no. 11, 111602, arXiv:1910.02080 [hep-ph].
  66. S. Davidson and J. R. Ellis, “Basis independent measures of R-parity violation,” Phys. Lett. B 390 (1997) 210–220, arXiv:hep-ph/9609451.
  67. S. Davidson and J. R. Ellis, “Flavor dependent and basis independent measures of R violation,” Phys. Rev. D 56 (1997) 4182–4193, arXiv:hep-ph/9702247.
  68. K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “The Electroweak phase transition: A Nonperturbative analysis,” Nucl. Phys. B 466 (1996) 189–258, arXiv:hep-lat/9510020.
  69. K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “Is there a  hot electroweak phase transition at mH≳mWgreater-than-or-equivalent-tosubscript𝑚𝐻subscript𝑚𝑊m_{H}\gtrsim m_{W}italic_m start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≳ italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT?,” Phys. Rev. Lett. 77 (1996) 2887–2890, arXiv:hep-ph/9605288.
  70. M. Gurtler, E.-M. Ilgenfritz, and A. Schiller, “Where the electroweak phase transition ends,” Phys. Rev. D 56 (1997) 3888–3895, arXiv:hep-lat/9704013.
  71. K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, and M. E. Shaposhnikov, “The Universality class of the electroweak theory,” Nucl. Phys. B 532 (1998) 283–314, arXiv:hep-lat/9805013.
  72. F. Csikor, Z. Fodor, and J. Heitger, “Endpoint of the hot electroweak phase transition,” Phys. Rev. Lett. 82 (1999) 21–24, arXiv:hep-ph/9809291.
  73. K. Jansen, “Status of the finite temperature electroweak phase transition on the lattice,” Nucl. Phys. B Proc. Suppl. 47 (1996) 196–211, arXiv:hep-lat/9509018.
  74. M. Dine, R. G. Leigh, P. Y. Huet, A. D. Linde, and D. A. Linde, “Towards the theory of the electroweak phase transition,” Phys. Rev. D 46 (1992) 550–571, arXiv:hep-ph/9203203.
  75. P. B. Arnold and O. Espinosa, “The Effective potential and first order phase transitions: Beyond leading-order,” Phys. Rev. D 47 (1993) 3546, arXiv:hep-ph/9212235. [Erratum: Phys.Rev.D 50, 6662 (1994)].
  76. J. R. Espinosa, “Tunneling without Bounce,” Phys. Rev. D 100 (2019) no. 10, 105002, arXiv:1908.01730 [hep-th].
  77. D. Croon, O. Gould, P. Schicho, T. V. I. Tenkanen, and G. White, “Theoretical uncertainties for cosmological first-order phase transitions,” Journal of High Energy Physics 2021 (2021) 55, arXiv:2009.10080.
  78. P. M. Schicho, T. V. I. Tenkanen, and J. Österman, “Robust approach to thermal resummation: Standard Model meets a singlet,” JHEP 06 (2021) 130, arXiv:2102.11145 [hep-ph].
  79. L. Niemi, P. Schicho, and T. V. I. Tenkanen, “Singlet-assisted electroweak phase transition at two loops,” Phys. Rev. D 103 (2021) no. 11, 115035, arXiv:2103.07467 [hep-ph].
  80. P. Schicho, T. V. I. Tenkanen, and G. White, “Combining thermal resummation and gauge invariance for electroweak phase transition,” JHEP 11 (2022) 047, arXiv:2203.04284 [hep-ph].
  81. Particle Data Group Collaboration, R. L. Workman and Others, “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
  82. D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New J. Phys. 14 (2012) 125003, arXiv:1206.2942 [hep-ph].
  83. M. Quiros, “Finite temperature field theory and phase transitions,” in ICTP Summer School in High-Energy Physics and Cosmology, pp. 187–259. 1, 1999. arXiv:hep-ph/9901312.
  84. M. Carena, J. Kozaczuk, Z. Liu, T. Ou, M. J. Ramsey-Musolf, J. Shelton, Y. Wang, and K.-P. Xie, “Probing the Electroweak Phase Transition with Exotic Higgs Decays,” in 2022 Snowmass Summer Study. 3, 2022. arXiv:2203.08206 [hep-ph].
  85. M. Ibe, S. Kobayashi, Y. Nakayama, and S. Shirai, “Cosmological constraints on dark scalar,” JHEP 03 (2022) 198, arXiv:2112.11096 [hep-ph].
  86. M. D’Onofrio, K. Rummukainen, and A. Tranberg, “Sphaleron Rate in the Minimal Standard Model,” Phys. Rev. Lett. 113 (2014) no. 14, 141602, arXiv:1404.3565 [hep-ph].
  87. J. B. Muñoz, C. Dvorkin, and F.-Y. Cyr-Racine, “Probing the Small-Scale Matter Power Spectrum with Large-Scale 21-cm Data,” Phys. Rev. D 101 (2020) no. 6, 063526, arXiv:1911.11144 [astro-ph.CO].
  88. ATLAS Collaboration, “Prospects for searches for heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and W′superscript𝑊′W^{\prime}italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT bosons in fermionic final states with the ATLAS experiment at the HL-LHC,” tech. rep., CERN, Geneva, Dec, 2018. https://cds.cern.ch/record/2650549. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-044.
  89. N. Kumar and S. P. Martin, “Vectorlike Leptons at the Large Hadron Collider,” Phys. Rev. D 92 (2015) no. 11, 115018, arXiv:1510.03456 [hep-ph].
  90. P. N. Bhattiprolu and S. P. Martin, “Prospects for vectorlike leptons at future proton-proton colliders,” Phys. Rev. D 100 (2019) no. 1, 015033, arXiv:1905.00498 [hep-ph].
  91. 3, 2022. arXiv:2203.08039 [hep-ph].
  92. A. Lue, K. Rajagopal, and M. Trodden, “Semianalytical approaches to local electroweak baryogenesis,” Phys. Rev. D 56 (1997) 1250–1261, arXiv:hep-ph/9612282.
  93. S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,” Phys. Rev. D 7 (1973) 1888–1910.
  94. R. Jackiw, “Functional evaluation of the effective potential,” Phys. Rev. D 9 (1974) 1686.
  95. J. S. Kang, “Gauge Invariance of the Scalar-Vector Mass Ratio in the Coleman-Weinberg Model,” Phys. Rev. D 10 (1974) 3455.
  96. L. Dolan and R. Jackiw, “Gauge Invariant Signal for Gauge Symmetry Breaking,” Phys. Rev. D 9 (1974) 2904.
  97. R. Fukuda and T. Kugo, “Gauge Invariance in the Effective Action and Potential,” Phys. Rev. D 13 (1976) 3469.
  98. I. J. R. Aitchison and C. M. Fraser, “Gauge Invariance and the Effective Potential,” Annals Phys. 156 (1984) 1.
  99. W. Loinaz and R. S. Willey, “Gauge dependence of lower bounds on the Higgs mass derived from electroweak vacuum stability constraints,” Phys. Rev. D 56 (1997) 7416–7426, arXiv:hep-ph/9702321.
  100. M. E. Carrington, “The Effective potential at finite temperature in the Standard Model,” Phys. Rev. D 45 (1992) 2933–2944.
  101. P. H. Ginsparg, “First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature,” Nucl. Phys. B 170 (1980) 388–408.
  102. T. Appelquist and R. D. Pisarski, “High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics,” Phys. Rev. D 23 (1981) 2305.
  103. S. Nadkarni, “Dimensional Reduction in Hot QCD,” Phys. Rev. D 27 (1983) 917.
  104. N. P. Landsman, “Limitations to Dimensional Reduction at High Temperature,” Nucl. Phys. B 322 (1989) 498–530.
  105. K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “Generic rules for high temperature dimensional reduction and their application to the standard model,” Nucl. Phys. B 458 (1996) 90–136, arXiv:hep-ph/9508379.
  106. A. Ekstedt, P. Schicho, and T. V. I. Tenkanen, “DRalgo: A package for effective field theory approach for thermal phase transitions,” Comput. Phys. Commun. 288 (2023) 108725, arXiv:2205.08815 [hep-ph].
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.