Baryogenesis in a Parity Solution to the Strong CP Problem (2210.16207v2)
Abstract: Space-time parity can solve the strong CP problem and introduces a spontaneously broken $SU(2)_R$ gauge symmetry. We investigate the possibility of baryogenesis from a first-order $SU(2)_R$ phase transition similar to electroweak baryogenesis. We consider a model with the minimal Higgs content, for which the strong CP problem is indeed solved without introducing extra symmetry beyond parity. Although the parity symmetry seems to forbid the $SU(2)_R$ anomaly of the $B-L$ symmetry, the structure of the fermion masses can allow for the $SU(2)_R$ sphaleron process to produce non-zero $B-L$ asymmetry of Standard Model particles so that the wash out by the $SU(2)_L$ sphaleron process is avoided. The setup predicts a new hyper-charged fermion whose mass is correlated with the $SU(2)_R$ symmetry breaking scale and hence with the $SU(2)_R$ gauge boson mass, and depending on the origin of CP violation, with an electron electric dipole moment. In a setup where CP violation and the first-order phase transition are assisted by a singlet scalar field, the singlet can be searched for at future colliders.
- J. S. Bell and R. Jackiw, “A PCAC puzzle: π0→γγ→superscript𝜋0𝛾𝛾\pi^{0}\to\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ in the σ𝜎\sigmaitalic_σ model,” Nuovo Cim. A 60 (1969) 47–61.
- S. L. Adler, “Axial vector vertex in spinor electrodynamics,” Phys. Rev. 177 (1969) 2426–2438.
- G. ’t Hooft, “Symmetry Breaking Through Bell-Jackiw Anomalies,” Phys. Rev. Lett. 37 (1976) 8–11.
- G. ’t Hooft, “Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle,” Phys. Rev. D 14 (1976) 3432–3450. [Erratum: Phys.Rev.D 18, 2199 (1978)].
- M. Beg and H.-S. Tsao, “Strong P, T Noninvariances in a Superweak Theory,” Phys. Rev. Lett. 41 (1978) 278.
- R. N. Mohapatra and G. Senjanovic, “Natural Suppression of Strong p and t Noninvariance,” Phys. Lett. B 79 (1978) 283–286.
- K. Babu and R. N. Mohapatra, “CP Violation in Seesaw Models of Quark Masses,” Phys. Rev. Lett. 62 (1989) 1079.
- K. Babu and R. N. Mohapatra, “A Solution to the Strong CP Problem Without an Axion,” Phys. Rev. D 41 (1990) 1286.
- R. Kuchimanchi, “Solution to the strong CP problem: Supersymmetry with parity,” Phys. Rev. Lett. 76 (1996) 3486–3489, arXiv:hep-ph/9511376.
- R. N. Mohapatra and A. Rasin, “Simple supersymmetric solution to the strong CP problem,” Phys. Rev. Lett. 76 (1996) 3490–3493, arXiv:hep-ph/9511391.
- L. J. Hall and K. Harigaya, “Implications of Higgs Discovery for the Strong CP Problem and Unification,” JHEP 10 (2018) 130, arXiv:1803.08119 [hep-ph].
- J. de Vries, P. Draper, and H. H. Patel, “Do Minimal Parity Solutions to the Strong CP𝐶𝑃CPitalic_C italic_P Problem Work?,” arXiv:2109.01630 [hep-ph].
- V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe,” Phys. Lett. 155B (1985) 36.
- A. I. Bochkarev and M. E. Shaposhnikov, “Electroweak Production of Baryon Asymmetry and Upper Bounds on the Higgs and Top Masses,” Mod. Phys. Lett. A 2 (1987) 417.
- G. W. Anderson and L. J. Hall, “The Electroweak phase transition and baryogenesis,” Phys. Rev. D 45 (1992) 2685–2698.
- J. R. Espinosa and M. Quiros, “The Electroweak phase transition with a singlet,” Phys. Lett. B 305 (1993) 98–105, arXiv:hep-ph/9301285.
- J. R. Espinosa, M. Quiros, and F. Zwirner, “On the electroweak phase transition in the minimal supersymmetric Standard Model,” Phys. Lett. B 307 (1993) 106–115, arXiv:hep-ph/9303317.
- D. Bodeker, P. John, M. Laine, and M. G. Schmidt, “The Two loop MSSM finite temperature effective potential with stop condensation,” Nucl. Phys. B 497 (1997) 387–414, arXiv:hep-ph/9612364.
- M. Carena, M. Quiros, and C. E. M. Wagner, “Opening the window for electroweak baryogenesis,” Phys. Lett. B 380 (1996) 81–91, arXiv:hep-ph/9603420.
- J. R. Espinosa, “Dominant two loop corrections to the MSSM finite temperature effective potential,” Nucl. Phys. B 475 (1996) 273–292, arXiv:hep-ph/9604320.
- M. Carena, M. Quiros, and C. E. M. Wagner, “Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron,” Nucl. Phys. B 524 (1998) 3–22, arXiv:hep-ph/9710401.
- J. M. Cline and G. D. Moore, “Supersymmetric electroweak phase transition: Baryogenesis versus experimental constraints,” Phys. Rev. Lett. 81 (1998) 3315–3318, arXiv:hep-ph/9806354.
- M. Pietroni, “The Electroweak phase transition in a nonminimal supersymmetric model,” Nucl. Phys. B 402 (1993) 27–45, arXiv:hep-ph/9207227.
- J. Choi and R. R. Volkas, “Real Higgs singlet and the electroweak phase transition in the Standard Model,” Phys. Lett. B317 (1993) 385–391, arXiv:hep-ph/9308234 [hep-ph].
- N. Turok and J. Zadrozny, “Phase transitions in the two doublet model,” Nucl. Phys. B 369 (1992) 729–742.
- J. M. Cline, K. Kainulainen, and A. P. Vischer, “Dynamics of two Higgs doublet CP violation and baryogenesis at the electroweak phase transition,” Phys. Rev. D 54 (1996) 2451–2472, arXiv:hep-ph/9506284.
- J. M. Cline and P.-A. Lemieux, “Electroweak phase transition in two Higgs doublet models,” Phys. Rev. D 55 (1997) 3873–3881, arXiv:hep-ph/9609240.
- V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, and G. Shaughnessy, “Complex Singlet Extension of the Standard Model,” Phys. Rev. D 79 (2009) 015018, arXiv:0811.0393 [hep-ph].
- S. Das, P. J. Fox, A. Kumar, and N. Weiner, “The Dark Side of the Electroweak Phase Transition,” JHEP 11 (2010) 108, arXiv:0910.1262 [hep-ph].
- K. Harigaya and I. R. Wang, “First-Order Electroweak Phase Transition and Baryogenesis from a Naturally Light Singlet Scalar,” arXiv:2207.02867 [hep-ph].
- M. Dine, P. Huet, R. L. Singleton, Jr, and L. Susskind, “Creating the baryon asymmetry at the electroweak phase transition,” Phys. Lett. B 257 (1991) 351–356.
- V. Brdar, L. Graf, A. J. Helmboldt, and X.-J. Xu, “Gravitational Waves as a Probe of Left-Right Symmetry Breaking,” JCAP 12 (2019) 027, arXiv:1909.02018 [hep-ph].
- K. Fujikura, K. Harigaya, Y. Nakai, and I. R. Wang, “Electroweak-like baryogenesis with new chiral matter,” JHEP 07 (2021) 224, arXiv:2103.05005 [hep-ph]. [Erratum: JHEP 12, 192 (2021), Erratum: JHEP 1, 156 (2022), Erratum: JHEP 01, 156 (2022)].
- J. Shu, T. M. P. Tait, and C. E. M. Wagner, “Baryogenesis from an Earlier Phase Transition,” Phys. Rev. D 75 (2007) 063510, arXiv:hep-ph/0610375.
- J. Shelton and K. M. Zurek, “Darkogenesis: A baryon asymmetry from the dark matter sector,” Phys. Rev. D 82 (2010) 123512, arXiv:1008.1997 [hep-ph].
- H. Davoudiasl, P. P. Giardino, and C. Zhang, “Higgs-like boson at 750 GeV and genesis of baryons,” Phys. Rev. D 94 (2016) no. 1, 015006, arXiv:1605.00037 [hep-ph].
- B. Fornal, Y. Shirman, T. M. P. Tait, and J. R. West, “Asymmetric dark matter and baryogenesis from SU(2)ℓ𝑆𝑈subscript2ℓSU(2)_{\ell}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT,” Phys. Rev. D 96 (2017) no. 3, 035001, arXiv:1703.00199 [hep-ph].
- E. Hall, T. Konstandin, R. McGehee, H. Murayama, and G. Servant, “Baryogenesis From a Dark First-Order Phase Transition,” JHEP 04 (2020) 042, arXiv:1910.08068 [hep-ph].
- V. Agrawal, S. M. Barr, J. F. Donoghue, and D. Seckel, “Viable range of the mass scale of the standard model,” Phys. Rev. D 57 (1998) 5480–5492, arXiv:hep-ph/9707380.
- L. J. Hall, D. Pinner, and J. T. Ruderman, “The Weak Scale from BBN,” JHEP 12 (2014) 134, arXiv:1409.0551 [hep-ph].
- G. D’Amico, A. Strumia, A. Urbano, and W. Xue, “Direct anthropic bound on the weak scale from supernovæ explosions,” Phys. Rev. D 100 (2019) no. 8, 083013, arXiv:1906.00986 [astro-ph.HE].
- R. Kawasaki, T. Morozumi, and H. Umeeda, “Quark sector CP violation of the universal seesaw model,” Phys. Rev. D 88 (2013) 033019, arXiv:1306.5080 [hep-ph].
- K. S. Babu, B. Dutta, and R. N. Mohapatra, “A theory of R(D*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT, D) anomaly with right-handed currents,” JHEP 01 (2019) 168, arXiv:1811.04496 [hep-ph].
- N. Craig, I. Garcia Garcia, G. Koszegi, and A. McCune, “P not PQ,” JHEP 09 (2021) 130, arXiv:2012.13416 [hep-ph].
- T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C 7902131 (1979) 95–99.
- M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,” Conf. Proc. C790927 (1979) 315–321, arXiv:1306.4669 [hep-th].
- P. Minkowski, “μ→eγ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?,” Phys. Lett. 67B (1977) 421–428.
- R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912. [,231(1979)].
- M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt, “Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α𝛼\alphaitalic_α forest data,” Phys. Rev. D 88 (2013) 043502, arXiv:1306.2314 [astro-ph.CO].
- N. Palanque-Delabrouille, C. Yèche, N. Schöneberg, J. Lesgourgues, M. Walther, S. Chabanier, and E. Armengaud, “Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α𝛼\alphaitalic_α and Planck full-survey data,” JCAP 04 (2020) 038, arXiv:1911.09073 [astro-ph.CO].
- A. Garzilli, A. Magalich, O. Ruchayskiy, and A. Boyarsky, “How to constrain warm dark matter with the Lyman-α𝛼\alphaitalic_α forest,” Mon. Not. Roy. Astron. Soc. 502 (2021) no. 2, 2356–2363, arXiv:1912.09397 [astro-ph.CO].
- F. Bezrukov, H. Hettmansperger, and M. Lindner, “keV sterile neutrino Dark Matter in gauge extensions of the Standard Model,” Phys. Rev. D 81 (2010) 085032, arXiv:0912.4415 [hep-ph].
- A. Greljo, D. J. Robinson, B. Shakya, and J. Zupan, “R(D(+){}^{(+)}start_FLOATSUPERSCRIPT ( + ) end_FLOATSUPERSCRIPT) from W+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT and right-handed neutrinos,” JHEP 09 (2018) 169, arXiv:1804.04642 [hep-ph].
- J. A. Dror, D. Dunsky, L. J. Hall, and K. Harigaya, “Sterile Neutrino Dark Matter in Left-Right Theories,” JHEP 07 (2020) 168, arXiv:2004.09511 [hep-ph].
- J. Carrasco-Martinez, D. I. Dunsky, L. J. Hall, and K. Harigaya, “Leptogenesis in Parity Solutions to the Strong CP Problem and Standard Model Parameters,” arXiv:2307.15731 [hep-ph].
- P. S. B. Dev and A. Pilaftsis, “Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models,” Phys. Rev. D 86 (2012) 113001, arXiv:1209.4051 [hep-ph].
- J. A. Harvey and M. S. Turner, “Cosmological baryon and lepton number in the presence of electroweak fermion number violation,” Phys. Rev. D 42 (1990) 3344–3349.
- D. Bödeker and D. Schröder, “Equilibration of right-handed electrons,” JCAP 05 (2019) 010, arXiv:1902.07220 [hep-ph].
- K. Harigaya and I. R. Wang, “Axiogenesis from SU(2)R𝑆𝑈subscript2𝑅SU(2)_{R}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT phase transition,” JHEP 10 (2021) 022, arXiv:2107.09679 [hep-ph]. [Erratum: JHEP 12, 193 (2021)].
- B. A. Campbell, S. Davidson, J. R. Ellis, and K. A. Olive, “On the baryon, lepton flavor and right-handed electron asymmetries of the universe,” Phys. Lett. B 297 (1992) 118–124, arXiv:hep-ph/9302221.
- J. M. Cline, K. Kainulainen, and K. A. Olive, “On the erasure and regeneration of the primordial baryon asymmetry by sphalerons,” Phys. Rev. Lett. 71 (1993) 2372–2375, arXiv:hep-ph/9304321.
- J. M. Cline, K. Kainulainen, and K. A. Olive, “Protecting the primordial baryon asymmetry from erasure by sphalerons,” Phys. Rev. D 49 (1994) 6394–6409, arXiv:hep-ph/9401208.
- M. Fukugita and T. Yanagida, “Resurrection of grand unified theory baryogenesis,” Phys. Rev. Lett. 89 (2002) 131602, arXiv:hep-ph/0203194.
- V. Domcke, K. Kamada, K. Mukaida, K. Schmitz, and M. Yamada, “Wash-In Leptogenesis,” Phys. Rev. Lett. 126 (2021) no. 20, 201802, arXiv:2011.09347 [hep-ph].
- R. T. Co and K. Harigaya, “Axiogenesis,” Phys. Rev. Lett. 124 (2020) no. 11, 111602, arXiv:1910.02080 [hep-ph].
- S. Davidson and J. R. Ellis, “Basis independent measures of R-parity violation,” Phys. Lett. B 390 (1997) 210–220, arXiv:hep-ph/9609451.
- S. Davidson and J. R. Ellis, “Flavor dependent and basis independent measures of R violation,” Phys. Rev. D 56 (1997) 4182–4193, arXiv:hep-ph/9702247.
- K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “The Electroweak phase transition: A Nonperturbative analysis,” Nucl. Phys. B 466 (1996) 189–258, arXiv:hep-lat/9510020.
- K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “Is there a hot electroweak phase transition at mH≳mWgreater-than-or-equivalent-tosubscript𝑚𝐻subscript𝑚𝑊m_{H}\gtrsim m_{W}italic_m start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≳ italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT?,” Phys. Rev. Lett. 77 (1996) 2887–2890, arXiv:hep-ph/9605288.
- M. Gurtler, E.-M. Ilgenfritz, and A. Schiller, “Where the electroweak phase transition ends,” Phys. Rev. D 56 (1997) 3888–3895, arXiv:hep-lat/9704013.
- K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, and M. E. Shaposhnikov, “The Universality class of the electroweak theory,” Nucl. Phys. B 532 (1998) 283–314, arXiv:hep-lat/9805013.
- F. Csikor, Z. Fodor, and J. Heitger, “Endpoint of the hot electroweak phase transition,” Phys. Rev. Lett. 82 (1999) 21–24, arXiv:hep-ph/9809291.
- K. Jansen, “Status of the finite temperature electroweak phase transition on the lattice,” Nucl. Phys. B Proc. Suppl. 47 (1996) 196–211, arXiv:hep-lat/9509018.
- M. Dine, R. G. Leigh, P. Y. Huet, A. D. Linde, and D. A. Linde, “Towards the theory of the electroweak phase transition,” Phys. Rev. D 46 (1992) 550–571, arXiv:hep-ph/9203203.
- P. B. Arnold and O. Espinosa, “The Effective potential and first order phase transitions: Beyond leading-order,” Phys. Rev. D 47 (1993) 3546, arXiv:hep-ph/9212235. [Erratum: Phys.Rev.D 50, 6662 (1994)].
- J. R. Espinosa, “Tunneling without Bounce,” Phys. Rev. D 100 (2019) no. 10, 105002, arXiv:1908.01730 [hep-th].
- D. Croon, O. Gould, P. Schicho, T. V. I. Tenkanen, and G. White, “Theoretical uncertainties for cosmological first-order phase transitions,” Journal of High Energy Physics 2021 (2021) 55, arXiv:2009.10080.
- P. M. Schicho, T. V. I. Tenkanen, and J. Österman, “Robust approach to thermal resummation: Standard Model meets a singlet,” JHEP 06 (2021) 130, arXiv:2102.11145 [hep-ph].
- L. Niemi, P. Schicho, and T. V. I. Tenkanen, “Singlet-assisted electroweak phase transition at two loops,” Phys. Rev. D 103 (2021) no. 11, 115035, arXiv:2103.07467 [hep-ph].
- P. Schicho, T. V. I. Tenkanen, and G. White, “Combining thermal resummation and gauge invariance for electroweak phase transition,” JHEP 11 (2022) 047, arXiv:2203.04284 [hep-ph].
- Particle Data Group Collaboration, R. L. Workman and Others, “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New J. Phys. 14 (2012) 125003, arXiv:1206.2942 [hep-ph].
- M. Quiros, “Finite temperature field theory and phase transitions,” in ICTP Summer School in High-Energy Physics and Cosmology, pp. 187–259. 1, 1999. arXiv:hep-ph/9901312.
- M. Carena, J. Kozaczuk, Z. Liu, T. Ou, M. J. Ramsey-Musolf, J. Shelton, Y. Wang, and K.-P. Xie, “Probing the Electroweak Phase Transition with Exotic Higgs Decays,” in 2022 Snowmass Summer Study. 3, 2022. arXiv:2203.08206 [hep-ph].
- M. Ibe, S. Kobayashi, Y. Nakayama, and S. Shirai, “Cosmological constraints on dark scalar,” JHEP 03 (2022) 198, arXiv:2112.11096 [hep-ph].
- M. D’Onofrio, K. Rummukainen, and A. Tranberg, “Sphaleron Rate in the Minimal Standard Model,” Phys. Rev. Lett. 113 (2014) no. 14, 141602, arXiv:1404.3565 [hep-ph].
- J. B. Muñoz, C. Dvorkin, and F.-Y. Cyr-Racine, “Probing the Small-Scale Matter Power Spectrum with Large-Scale 21-cm Data,” Phys. Rev. D 101 (2020) no. 6, 063526, arXiv:1911.11144 [astro-ph.CO].
- ATLAS Collaboration, “Prospects for searches for heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and W′superscript𝑊′W^{\prime}italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT bosons in fermionic final states with the ATLAS experiment at the HL-LHC,” tech. rep., CERN, Geneva, Dec, 2018. https://cds.cern.ch/record/2650549. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-044.
- N. Kumar and S. P. Martin, “Vectorlike Leptons at the Large Hadron Collider,” Phys. Rev. D 92 (2015) no. 11, 115018, arXiv:1510.03456 [hep-ph].
- P. N. Bhattiprolu and S. P. Martin, “Prospects for vectorlike leptons at future proton-proton colliders,” Phys. Rev. D 100 (2019) no. 1, 015033, arXiv:1905.00498 [hep-ph].
- 3, 2022. arXiv:2203.08039 [hep-ph].
- A. Lue, K. Rajagopal, and M. Trodden, “Semianalytical approaches to local electroweak baryogenesis,” Phys. Rev. D 56 (1997) 1250–1261, arXiv:hep-ph/9612282.
- S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,” Phys. Rev. D 7 (1973) 1888–1910.
- R. Jackiw, “Functional evaluation of the effective potential,” Phys. Rev. D 9 (1974) 1686.
- J. S. Kang, “Gauge Invariance of the Scalar-Vector Mass Ratio in the Coleman-Weinberg Model,” Phys. Rev. D 10 (1974) 3455.
- L. Dolan and R. Jackiw, “Gauge Invariant Signal for Gauge Symmetry Breaking,” Phys. Rev. D 9 (1974) 2904.
- R. Fukuda and T. Kugo, “Gauge Invariance in the Effective Action and Potential,” Phys. Rev. D 13 (1976) 3469.
- I. J. R. Aitchison and C. M. Fraser, “Gauge Invariance and the Effective Potential,” Annals Phys. 156 (1984) 1.
- W. Loinaz and R. S. Willey, “Gauge dependence of lower bounds on the Higgs mass derived from electroweak vacuum stability constraints,” Phys. Rev. D 56 (1997) 7416–7426, arXiv:hep-ph/9702321.
- M. E. Carrington, “The Effective potential at finite temperature in the Standard Model,” Phys. Rev. D 45 (1992) 2933–2944.
- P. H. Ginsparg, “First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature,” Nucl. Phys. B 170 (1980) 388–408.
- T. Appelquist and R. D. Pisarski, “High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics,” Phys. Rev. D 23 (1981) 2305.
- S. Nadkarni, “Dimensional Reduction in Hot QCD,” Phys. Rev. D 27 (1983) 917.
- N. P. Landsman, “Limitations to Dimensional Reduction at High Temperature,” Nucl. Phys. B 322 (1989) 498–530.
- K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “Generic rules for high temperature dimensional reduction and their application to the standard model,” Nucl. Phys. B 458 (1996) 90–136, arXiv:hep-ph/9508379.
- A. Ekstedt, P. Schicho, and T. V. I. Tenkanen, “DRalgo: A package for effective field theory approach for thermal phase transitions,” Comput. Phys. Commun. 288 (2023) 108725, arXiv:2205.08815 [hep-ph].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.