Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Toward Equation of Motion for Deep Neural Networks: Continuous-time Gradient Descent and Discretization Error Analysis (2210.15898v2)

Published 28 Oct 2022 in cs.LG and stat.ML

Abstract: We derive and solve an ``Equation of Motion'' (EoM) for deep neural networks (DNNs), a differential equation that precisely describes the discrete learning dynamics of DNNs. Differential equations are continuous but have played a prominent role even in the study of discrete optimization (gradient descent (GD) algorithms). However, there still exist gaps between differential equations and the actual learning dynamics of DNNs due to discretization error. In this paper, we start from gradient flow (GF) and derive a counter term that cancels the discretization error between GF and GD. As a result, we obtain EoM, a continuous differential equation that precisely describes the discrete learning dynamics of GD. We also derive discretization error to show to what extent EoM is precise. In addition, we apply EoM to two specific cases: scale- and translation-invariant layers. EoM highlights differences between continuous-time and discrete-time GD, indicating the importance of the counter term for a better description of the discrete learning dynamics of GD. Our experimental results support our theoretical findings.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)