Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk-Averse Model Predictive Control for Priced Timed Automata (2210.15604v1)

Published 27 Oct 2022 in eess.SY and cs.SY

Abstract: In this paper, we propose a Risk-Averse Priced Timed Automata (PTA) Model Predictive Control (MPC) framework to increase flexibility of cyber-physical systems. To improve flexibility in these systems, our risk-averse framework solves a multi-objective optimization problem to minimize the cost and risk, simultaneously. While minimizing cost ensures the least effort to achieve a task, minimizing risk provides guarantees on the feasibility of the task even during uncertainty. Our framework explores the trade-off between these two qualities to obtain risk-averse control actions. The solution of risk-averse PTA MPC dynamic decision-making algorithm reacts relatively better to PTA changes compared to PTA MPC without risk-averse feature. An example from manufacturing systems is presented to show the application of the proposed control strategy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.