Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Better Heisenberg limits, coherence bounds, and energy-time tradeoffs via quantum Rényi information (2210.14613v2)

Published 26 Oct 2022 in quant-ph

Abstract: An uncertainty relation for the R\'enyi entropies of conjugate quantum observables is used to obtain a strong Heisenberg limit of the form ${\rm RMSE} \geq f(\alpha)/(\langle N\rangle+\frac12)$, bounding the root mean square error of any estimate of a random optical phase shift in terms of average photon number, where $f(\alpha)$ is maximised for non-Shannon entropies. Related simple yet strong uncertainty relations linking phase uncertainty to the photon number distribution, such as $\Delta\Phi\geq \max_n p_n$, are also obtained. These results are significantly strengthened via upper and lower bounds on the R\'enyi mutual information of quantum communication channels, related to asymmetry and convolution, and applied to the estimation (with prior information) of unitary shift parameters such as rotation angle and time, and to obtain strong bounds on measures of coherence. Sharper R\'enyi entropic uncertainty relations are also obtained, including time-energy uncertainty relations for Hamiltonians with discrete spectra. In the latter case almost-periodic R\'enyi entropies are introduced for nonperiodic systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.