Partial sums of generalized Rabotnov function (2210.14294v3)
Abstract: Let $(\mathbb{R}{\alpha ,\beta ,\gamma }(z)){m}(z)=z+\sum_{n=1}{m}A_{n}z{n+1}$ be the sequence of partial sums of the normalized Rabotnov functions $\mathbb{R}{\alpha ,\beta ,\gamma }(z)=z+\sum{n=1}{\infty }A_{n}z{n+1}$ where $A_{n}=\frac{\beta {n}\Gamma \left( \gamma +\alpha \right) }{\Gamma \left( \left( \gamma +\alpha \right) (n+1)\right) }.$ The purpose of the present paper is to determine lower bounds for $\mathfrak{R}\left { \frac{\mathbb{R}{\alpha ,\beta ,\gamma }(z)% }{(\mathbb{R}{\alpha ,\beta ,\gamma }){m}(z)}\right } ,\mathfrak{R}% \left { \frac{(\mathbb{R}{\alpha ,\beta ,\gamma }){m}(z)}{\mathbb{R}% _{\alpha ,\beta ,\gamma }(z)}\right } ,$ $\mathfrak{R}\left { \frac{\mathbb{R}{\alpha ,\beta ,\gamma }(z)}{(\mathbb{% R}{\alpha ,\beta ,\gamma }){m}{\prime }(z)}\right } ,\mathfrak{R}% \left { \frac{(\mathbb{R}{\alpha ,\beta ,\gamma }){m}{\prime }(z)}{% \mathbb{R}{\alpha ,\beta ,\gamma }(z)}\right } .$ Furthermore, we give lower bounds for $\mathfrak{R}\left { \frac{\mathbb{I}\left \mathbb{R}% _{\alpha ,\beta ,\gamma }\right}{(\mathbb{I}\left[ \mathbb{R}{\alpha ,\beta ,\gamma }\right] ){m}(z)}\right } $ and $\mathfrak{R}\left { \frac{% (\mathbb{I}\left[ \mathbb{R}{\alpha ,\beta ,\gamma }\right] ){m}(z)}{% \mathbb{I}\left \mathbb{R}_{\alpha ,\beta ,\gamma }\right}\right } $ where $\mathbb{I}\left[ \mathbb{R}{\alpha ,\beta ,\gamma }\right] $ is the Alexander transform of $\mathbb{R}_{\alpha ,\beta ,\gamma }$. Several examples of the main results are also considered.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.