Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Robust Real-World Dexterous Grasping Policies via Implicit Shape Augmentation (2210.13638v1)

Published 24 Oct 2022 in cs.RO

Abstract: Dexterous robotic hands have the capability to interact with a wide variety of household objects to perform tasks like grasping. However, learning robust real world grasping policies for arbitrary objects has proven challenging due to the difficulty of generating high quality training data. In this work, we propose a learning system (ISAGrasp) for leveraging a small number of human demonstrations to bootstrap the generation of a much larger dataset containing successful grasps on a variety of novel objects. Our key insight is to use a correspondence-aware implicit generative model to deform object meshes and demonstrated human grasps in order to generate a diverse dataset of novel objects and successful grasps for supervised learning, while maintaining semantic realism. We use this dataset to train a robust grasping policy in simulation which can be deployed in the real world. We demonstrate grasping performance with a four-fingered Allegro hand in both simulation and the real world, and show this method can handle entirely new semantic classes and achieve a 79% success rate on grasping unseen objects in the real world.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Zoey Qiuyu Chen (2 papers)
  2. Karl Van Wyk (27 papers)
  3. Yu-Wei Chao (28 papers)
  4. Wei Yang (349 papers)
  5. Arsalan Mousavian (42 papers)
  6. Abhishek Gupta (226 papers)
  7. Dieter Fox (201 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.