Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting the Citation Count and CiteScore of Journals One Year in Advance (2210.12908v1)

Published 24 Oct 2022 in cs.DL and cs.LG

Abstract: Prediction of the future performance of academic journals is a task that can benefit a variety of stakeholders including editorial staff, publishers, indexing services, researchers, university administrators and granting agencies. Using historical data on journal performance, this can be framed as a machine learning regression problem. In this work, we study two such regression tasks: 1) prediction of the number of citations a journal will receive during the next calendar year, and 2) prediction of the Elsevier CiteScore a journal will be assigned for the next calendar year. To address these tasks, we first create a dataset of historical bibliometric data for journals indexed in Scopus. We propose the use of neural network models trained on our dataset to predict the future performance of journals. To this end, we perform feature selection and model configuration for a Multi-Layer Perceptron and a Long Short-Term Memory. Through experimental comparisons to heuristic prediction baselines and classical machine learning models, we demonstrate superior performance in our proposed models for the prediction of future citation and CiteScore values.

Citations (8)

Summary

We haven't generated a summary for this paper yet.