Papers
Topics
Authors
Recent
Search
2000 character limit reached

NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos

Published 22 Oct 2022 in cs.CV, cs.GR, and cs.LG | (2210.12352v1)

Abstract: We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input. To decouple the learning of underlying scene geometry from dynamic motion, we represent the scene as a time-invariant signed distance function (SDF) which serves as a reference frame, along with a time-conditioned deformation field. We further bridge this neural geometry representation with a differentiable physics simulator by designing a two-way conversion between the neural field and its corresponding hexahedral mesh, enabling us to estimate physics parameters from the source video by minimizing a cycle consistency loss. Our method also allows a user to interactively edit 3D objects from the source video by modifying the recovered hexahedral mesh, and propagating the operation back to the neural field representation. Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches, and we provide extensive examples which demonstrate its ability to extract useful 3D representations from videos captured with consumer-grade cameras.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.