Overdetermined elliptic problems in nontrivial contractible domains of the sphere (2210.10826v2)
Abstract: In this paper, we prove the existence of nontrivial contractible domains $\Omega\subset\mathbb{S}{d}$, $d\geq2$, such that the overdetermined elliptic problem \begin{equation*} \begin{cases} -\varepsilon\Delta_{g} u +u-u{p}=0 &\mbox{in $\Omega$, } u>0 &\mbox{in $\Omega$, } u=0 &\mbox{on $\partial\Omega$, } \partial_{\nu} u=\mbox{constant} &\mbox{on $\partial\Omega$, } \end{cases} \end{equation*} admits a positive solution. Here $\Delta_{g}$ is the Laplace-Beltrami operator in the unit sphere $\mathbb{S}{d}$ with respect to the canonical round metric $g$, $\varepsilon>0$ is a small real parameter and $1<p<\frac{d+2}{d-2}$ ($p\>1$ if $d=2$). These domains are perturbations of $\mathbb{S}{d}\setminus D,$ where $D$ is a small geodesic ball. This shows in particular that Serrin's theorem for overdetermined problems in the Euclidean space cannot be generalized to the sphere even for contractible domains.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.