Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Adaptive Neural Network Ensemble Using Frequency Distribution (2210.10360v1)

Published 19 Oct 2022 in cs.LG

Abstract: Neural network (NN) ensembles can reduce large prediction variance of NN and improve prediction accuracy. For highly nonlinear problems with insufficient data set, the prediction accuracy of NN models becomes unstable, resulting in a decrease in the accuracy of ensembles. Therefore, this study proposes a frequency distribution-based ensemble that identifies core prediction values, which are expected to be concentrated near the true prediction value. The frequency distribution-based ensemble classifies core prediction values supported by multiple prediction values by conducting statistical analysis with a frequency distribution, which is based on various prediction values obtained from a given prediction point. The frequency distribution-based ensemble can improve predictive performance by excluding prediction values with low accuracy and coping with the uncertainty of the most frequent value. An adaptive sampling strategy that sequentially adds samples based on the core prediction variance calculated as the variance of the core prediction values is proposed to improve the predictive performance of the frequency distribution-based ensemble efficiently. Results of various case studies show that the prediction accuracy of the frequency distribution-based ensemble is higher than that of Kriging and other existing ensemble methods. In addition, the proposed adaptive sampling strategy effectively improves the predictive performance of the frequency distribution-based ensemble compared with the previously developed space-filling and prediction variance-based strategies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)