Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Satellite Anomaly Detection Using Variance Based Genetic Ensemble of Neural Networks (2302.05525v1)

Published 10 Feb 2023 in cs.LG, cs.NE, cs.SY, and eess.SY

Abstract: In this paper, we use a variance-based genetic ensemble (VGE) of Neural Networks (NNs) to detect anomalies in the satellite's historical data. We use an efficient ensemble of the predictions from multiple Recurrent Neural Networks (RNNs) by leveraging each model's uncertainty level (variance). For prediction, each RNN is guided by a Genetic Algorithm (GA) which constructs the optimal structure for each RNN model. However, finding the model uncertainty level is challenging in many cases. Although the Bayesian NNs (BNNs)-based methods are popular for providing the confidence bound of the models, they cannot be employed in complex NN structures as they are computationally intractable. This paper uses the Monte Carlo (MC) dropout as an approximation version of BNNs. Then these uncertainty levels and each predictive model suggested by GA are used to generate a new model, which is then used for forecasting the TS and AD. Simulation results show that the forecasting and AD capability of the ensemble model outperforms existing approaches.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.