A Model-Consistent Data-Driven Computational Strategy for PDE Joint Inversion Problems
Abstract: The task of simultaneously reconstructing multiple physical coefficients in partial differential equations (PDEs) from observed data is ubiquitous in applications. In this work, we propose an integrated data-driven and model-based iterative reconstruction framework for such joint inversion problems where additional data on the unknown coefficients are supplemented for better reconstructions. Our method couples the supplementary data with the PDE model to make the data-driven modeling process consistent with the model-based reconstruction procedure. We characterize the impact of learning uncertainty on the joint inversion results for two typical inverse problems. Numerical evidence is provided to demonstrate the feasibility of using data-driven models to improve the joint inversion of multiple coefficients in PDEs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.