Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Topological Data Analysis of Functional Human Brain Networks

Published 17 Oct 2022 in q-bio.NC and nlin.CD | (2210.09092v4)

Abstract: Developing reliable methods to discriminate different transient brain states that change over time is a key neuroscientific challenge in brain imaging studies. Topological data analysis (TDA), a novel framework based on algebraic topology, can handle such a challenge. However, existing TDA has been somewhat limited to capturing the static summary of dynamically changing brain networks. We propose a novel dynamic-TDA framework that builds persistent homology over a time series of brain networks. We construct a Wasserstein distance based inference procedure to discriminate between time series of networks. The method is applied to the resting-state functional magnetic resonance images of human brain. We demonstrate that our proposed dynamic-TDA approach can distinctly discriminate between the topological patterns of male and female brain networks. MATLAB code for implementing this method is available at https://github.com/laplcebeltrami/PH-STAT.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.