Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian Covariate-Dependent Quantile Directed Acyclic Graphical Models for Individualized Inference

Published 14 Oct 2022 in stat.ME | (2210.08096v3)

Abstract: We propose an approach termed ``qDAGx'' for Bayesian covariate-dependent quantile directed acyclic graphs (DAGs) where these DAGs are individualized, in the sense that they depend on individual-specific covariates. The individualized DAG structure of the proposed approach can be uniquely identified at any given quantile, based on purely observational data without strong assumptions such as a known topological ordering. To scale the proposed method to a large number of variables and covariates, we propose for the model parameters a novel parameter expanded horseshoe prior that affords a number of attractive theoretical and computational benefits to our approach. By modeling the conditional quantiles, qDAGx overcomes the common limitations of mean regression for DAGs, which can be sensitive to the choice of likelihood, e.g., an assumption of multivariate normality, as well as to the choice of priors. We demonstrate the performance of qDAGx through extensive numerical simulations and via an application in precision medicine, which infers patient-specific protein--protein interaction networks in lung cancer.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.