Papers
Topics
Authors
Recent
2000 character limit reached

A study on Darboux polynomials and their significance in determining other integrability quantifiers: A case study in third-order nonlinear ordinary differential equations

Published 14 Oct 2022 in nlin.SI | (2210.07537v1)

Abstract: In this paper, we present a method of deriving extended Prelle-Singer method's quantifiers from Darboux Polynomials for third-order nonlinear ordinary differential equations. By knowing the Darboux polynomials and its cofactors, we extract the extended Prelle-Singer method's quantities without evaluating the Prelle-Singer method's determining equations. We consider three different cases of known Darboux polynomials. In the first case, we prove the integrability of the given third-order nonlinear equation by utilizing the Prelle-Singer method's quantifiers from the two known Darboux polynomials. If we know only one Darboux polynomial, then the integrability of the given equation will be dealt as case $2$. Likewise, case $3$ discuss the integrability of the given system where we have two Darboux polynomials and one set of Prelle-Singer method quantity. The established interconnection not only helps in deriving the integrable quantifiers without solving the underlying determining equations. It also provides a way to prove the complete integrability and helps us in deriving the general solution of the given equation. We demonstrate the utility of this procedure with three different examples.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.