Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Framework with Meta-dropout for Few-shot Learning (2210.06409v1)

Published 12 Oct 2022 in cs.CV and cs.AI

Abstract: Conventional training of deep neural networks usually requires a substantial amount of data with expensive human annotations. In this paper, we utilize the idea of meta-learning to explain two very different streams of few-shot learning, i.e., the episodic meta-learning-based and pre-train finetune-based few-shot learning, and form a unified meta-learning framework. In order to improve the generalization power of our framework, we propose a simple yet effective strategy named meta-dropout, which is applied to the transferable knowledge generalized from base categories to novel categories. The proposed strategy can effectively prevent neural units from co-adapting excessively in the meta-training stage. Extensive experiments on the few-shot object detection and few-shot image classification datasets, i.e., Pascal VOC, MS COCO, CUB, and mini-ImageNet, validate the effectiveness of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shaobo Lin (23 papers)
  2. Xingyu Zeng (26 papers)
  3. Rui Zhao (241 papers)
Citations (1)