Papers
Topics
Authors
Recent
2000 character limit reached

A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation

Published 12 Oct 2022 in cs.LO | (2210.06095v4)

Abstract: We present a simple functional programming language, called Dual PCF, that implements forward mode automatic differentiation using dual numbers in the framework of exact real number computation. The main new feature of this language is the ability to evaluate correctly up to the precision specified by the user -- in a simple and direct way -- the directional derivative of functionals as well as first order functions. In contrast to other comparable languages, Dual PCF also includes the recursive operator for defining functions and functionals. We provide a wide range of examples of Lipschitz functions and functionals that can be defined in Dual PCF. We use domain theory both to give a denotational semantics to the language and to prove the correctness of the new derivative operator using logical relations. To be able to differentiate functionals -- including on function spaces equipped with their compact-open topology that do not admit a norm -- we develop a domain-theoretic directional derivative that is Scott continuous and extends Clarke's subgradient of real-valued locally Lipschitz maps on Banach spaces to real-valued continuous maps on Hausdorff topological vector spaces. Finally, we show that we can express arbitrary computable linear functionals in Dual PCF.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.