Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Face Super-Resolution with Progressive Embedding of Multi-scale Face Priors (2210.06002v1)

Published 12 Oct 2022 in cs.CV

Abstract: The face super-resolution (FSR) task is to reconstruct high-resolution face images from low-resolution inputs. Recent works have achieved success on this task by utilizing facial priors such as facial landmarks. Most existing methods pay more attention to global shape and structure information, but less to local texture information, which makes them cannot recover local details well. In this paper, we propose a novel recurrent convolutional network based framework for face super-resolution, which progressively introduces both global shape and local texture information. We take full advantage of the intermediate outputs of the recurrent network, and landmarks information and facial action units (AUs) information are extracted in the output of the first and second steps respectively, rather than low-resolution input. Moreover, we introduced AU classification results as a novel quantitative metric for facial details restoration. Extensive experiments show that our proposed method significantly outperforms state-of-the-art FSR methods in terms of image quality and facial details restoration.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chenggong Zhang (3 papers)
  2. Zhilei Liu (21 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.