Papers
Topics
Authors
Recent
2000 character limit reached

Reconstructing velocity and pressure from sparse noisy particle tracks using Physics-Informed Neural Networks

Published 10 Oct 2022 in physics.flu-dyn | (2210.04849v1)

Abstract: Volume-resolving imaging techniques are rapidly advancing progress in experimental fluid mechanics. However, reconstructing the full and structured Eulerian velocity and pressure fields from sparse and noisy particle tracks obtained experimentally remains a significant challenge. We introduce a new method for this reconstruction, based on Physics-Informed Neural Networks (PINNs). The method uses a Neural Network regularized by the Navier-Stokes equations to interpolate the velocity data and simultaneously determine the pressure field. We compare this approach to the state-of-the-art Constrained Cost Minimization method [1]. Using data from direct numerical simulations and various types of synthetically generated particle tracks, we show that PINNs are able to accurately reconstruct both velocity and pressure even in regions with low particle density and small accelerations. PINNs are also robust against increasing the distance between particles and the noise in the measurements, when studied under synthetic and experimental conditions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.