Papers
Topics
Authors
Recent
2000 character limit reached

Universal Adversarial Perturbations: Efficiency on a small image dataset

Published 10 Oct 2022 in cs.CV | (2210.04591v1)

Abstract: Although neural networks perform very well on the image classification task, they are still vulnerable to adversarial perturbations that can fool a neural network without visibly changing an input image. A paper has shown the existence of Universal Adversarial Perturbations which when added to any image will fool the neural network with a very high probability. In this paper we will try to reproduce the experience of the Universal Adversarial Perturbations paper, but on a smaller neural network architecture and training set, in order to be able to study the efficiency of the computed perturbation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.