2000 character limit reached
Universal Adversarial Perturbations: Efficiency on a small image dataset
Published 10 Oct 2022 in cs.CV | (2210.04591v1)
Abstract: Although neural networks perform very well on the image classification task, they are still vulnerable to adversarial perturbations that can fool a neural network without visibly changing an input image. A paper has shown the existence of Universal Adversarial Perturbations which when added to any image will fool the neural network with a very high probability. In this paper we will try to reproduce the experience of the Universal Adversarial Perturbations paper, but on a smaller neural network architecture and training set, in order to be able to study the efficiency of the computed perturbation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.