Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Asymmetric Temperature Scaling Makes Larger Networks Teach Well Again (2210.04427v2)

Published 10 Oct 2022 in cs.LG

Abstract: Knowledge Distillation (KD) aims at transferring the knowledge of a well-performed neural network (the {\it teacher}) to a weaker one (the {\it student}). A peculiar phenomenon is that a more accurate model doesn't necessarily teach better, and temperature adjustment can neither alleviate the mismatched capacity. To explain this, we decompose the efficacy of KD into three parts: {\it correct guidance}, {\it smooth regularization}, and {\it class discriminability}. The last term describes the distinctness of {\it wrong class probabilities} that the teacher provides in KD. Complex teachers tend to be over-confident and traditional temperature scaling limits the efficacy of {\it class discriminability}, resulting in less discriminative wrong class probabilities. Therefore, we propose {\it Asymmetric Temperature Scaling (ATS)}, which separately applies a higher/lower temperature to the correct/wrong class. ATS enlarges the variance of wrong class probabilities in the teacher's label and makes the students grasp the absolute affinities of wrong classes to the target class as discriminative as possible. Both theoretical analysis and extensive experimental results demonstrate the effectiveness of ATS. The demo developed in Mindspore is available at https://gitee.com/lxcnju/ats-mindspore and will be available at https://gitee.com/mindspore/models/tree/master/research/cv/ats.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.