Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized energy and gradient flow via graph framelets

Published 8 Oct 2022 in cs.LG and stat.ML | (2210.04124v1)

Abstract: In this work, we provide a theoretical understanding of the framelet-based graph neural networks through the perspective of energy gradient flow. By viewing the framelet-based models as discretized gradient flows of some energy, we show it can induce both low-frequency and high-frequency-dominated dynamics, via the separate weight matrices for different frequency components. This substantiates its good empirical performance on both homophilic and heterophilic graphs. We then propose a generalized energy via framelet decomposition and show its gradient flow leads to a novel graph neural network, which includes many existing models as special cases. We then explain how the proposed model generally leads to more flexible dynamics, thus potentially enhancing the representation power of graph neural networks.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.