Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustness of Unsupervised Representation Learning without Labels (2210.04076v1)

Published 8 Oct 2022 in cs.LG and cs.AI

Abstract: Unsupervised representation learning leverages large unlabeled datasets and is competitive with supervised learning. But non-robust encoders may affect downstream task robustness. Recently, robust representation encoders have become of interest. Still, all prior work evaluates robustness using a downstream classification task. Instead, we propose a family of unsupervised robustness measures, which are model- and task-agnostic and label-free. We benchmark state-of-the-art representation encoders and show that none dominates the rest. We offer unsupervised extensions to the FGSM and PGD attacks. When used in adversarial training, they improve most unsupervised robustness measures, including certified robustness. We validate our results against a linear probe and show that, for MOCOv2, adversarial training results in 3 times higher certified accuracy, a 2-fold decrease in impersonation attack success rate and considerable improvements in certified robustness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.