Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flow-based GAN for 3D Point Cloud Generation from a Single Image (2210.04072v1)

Published 8 Oct 2022 in cs.CV

Abstract: Generating a 3D point cloud from a single 2D image is of great importance for 3D scene understanding applications. To reconstruct the whole 3D shape of the object shown in the image, the existing deep learning based approaches use either explicit or implicit generative modeling of point clouds, which, however, suffer from limited quality. In this work, we aim to alleviate this issue by introducing a hybrid explicit-implicit generative modeling scheme, which inherits the flow-based explicit generative models for sampling point clouds with arbitrary resolutions while improving the detailed 3D structures of point clouds by leveraging the implicit generative adversarial networks (GANs). We evaluate on the large-scale synthetic dataset ShapeNet, with the experimental results demonstrating the superior performance of the proposed method. In addition, the generalization ability of our method is demonstrated by performing on cross-category synthetic images as well as by testing on real images from PASCAL3D+ dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yao Wei (18 papers)
  2. George Vosselman (23 papers)
  3. Michael Ying Yang (70 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.