Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A convolution inequality, yielding a sharper Berry-Esseen theorem for summands Zolotarev-close to normal (2210.04060v4)

Published 8 Oct 2022 in math.PR

Abstract: The classical Berry-Esseen error bound, for the normal approximation to the law of a sum of independent and identically distributed random variables, is here improved by replacing the standardised third absolute moment by a weak norm distance to normality. We thus sharpen and simplify two results of Ulyanov (1976) and of Senatov (1998), each of them previously optimal, in the line of research initiated by Zolotarev (1965) and Paulauskas (1969). Our proof is based on a seemingly incomparable normal approximation theorem of Zolotarev (1986), combined with our main technical result: The Kolmogorov distance (supremum norm of difference of distribution functions) between a convolution of two laws and a convolution of two Lipschitz laws is bounded homogeneously of degree 1 in the pair of the Wasserstein distances (L$1$ norms of differences of distribution functions) of the corresponding factors, and also, inessentially for the present application, in the pair of the Lipschitz constants. Side results include a short introduction to $\zeta$ norms on the real line, simpler inequalities for various probability distances, slight improvements of the theorem of Zolotarev (1986) and of a lower bound theorem of Bobkov, Chistyakov and G\"otze (2012), an application to sampling from finite populations, auxiliary results on rounding and on winsorisation, and computations of a few examples. The introductory section in particular is aimed at analysts in general rather than specialists in probability approximations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.