Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evaluation of the multiple zeta values $ζ(2,\ldots,2,4,2,\ldots,2)$ and period polynomial relations (2210.03616v2)

Published 7 Oct 2022 in math.NT

Abstract: In studying the depth filtration on multiple zeta values, difficulties quickly arise due to a disparity between it and the coradical filtration. In particular, there are additional relations in the depth graded algebra coming from period polynomials of cusp forms for $SL_2(\mathbb{Z})$. In contrast, a simple combinatorial filtration, the block filtration is known to agree with the coradical filtration, and so there is no similar defect in the associated graded. However, via an explicit evaluation of $\zeta(2,\ldots,2,4,2,\ldots,2)$ as a polynomial in double zeta values, we derive these period polynomial relations as a consequence of an intrinsic symmetry of block graded multiple zeta values in block degree 2. In deriving this evaluation, we find a Galois descent of certain alternating double zeta values to classical double zeta values, which we then apply to give an evaluation of the multiple $t$ values $t(2\ell,2k)$ in terms of classical double zeta values.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.