Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text-driven Video Prediction (2210.02872v1)

Published 6 Oct 2022 in cs.CV

Abstract: Current video generation models usually convert signals indicating appearance and motion received from inputs (e.g., image, text) or latent spaces (e.g., noise vectors) into consecutive frames, fulfilling a stochastic generation process for the uncertainty introduced by latent code sampling. However, this generation pattern lacks deterministic constraints for both appearance and motion, leading to uncontrollable and undesirable outcomes. To this end, we propose a new task called Text-driven Video Prediction (TVP). Taking the first frame and text caption as inputs, this task aims to synthesize the following frames. Specifically, appearance and motion components are provided by the image and caption separately. The key to addressing the TVP task depends on fully exploring the underlying motion information in text descriptions, thus facilitating plausible video generation. In fact, this task is intrinsically a cause-and-effect problem, as the text content directly influences the motion changes of frames. To investigate the capability of text in causal inference for progressive motion information, our TVP framework contains a Text Inference Module (TIM), producing step-wise embeddings to regulate motion inference for subsequent frames. In particular, a refinement mechanism incorporating global motion semantics guarantees coherent generation. Extensive experiments are conducted on Something-Something V2 and Single Moving MNIST datasets. Experimental results demonstrate that our model achieves better results over other baselines, verifying the effectiveness of the proposed framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xue Song (12 papers)
  2. Jingjing Chen (99 papers)
  3. Bin Zhu (218 papers)
  4. Yu-Gang Jiang (223 papers)
Citations (3)