Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Potential and limitations of quantum extreme learning machines (2210.00780v4)

Published 3 Oct 2022 in quant-ph

Abstract: Quantum reservoir computers (QRC) and quantum extreme learning machines (QELM) aim to efficiently post-process the outcome of fixed -- generally uncalibrated -- quantum devices to solve tasks such as the estimation of the properties of quantum states. The characterisation of their potential and limitations, which is currently lacking, will enable the full deployment of such approaches to problems of system identification, device performance optimization, and state or process reconstruction. We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements, and provide an explicit characterisation of the information exactly retrievable with such protocols. We furthermore find a close analogy between the training process of QELMs and that of reconstructing the effective measurement characterising the given device. Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs, and has the potential to become a powerful measurement paradigm for quantum state estimation that is more resilient to noise and imperfections.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.