Online Pen Testing (2210.00655v2)
Abstract: We study a "pen testing" problem, in which we are given $n$ pens with unknown amounts of ink $X_1, X_2, \ldots, X_n$, and we want to choose a pen with the maximum amount of remaining ink in it. The challenge is that we cannot access each $X_i$ directly; we only get to write with the $i$-th pen until either a certain amount of ink is used, or the pen runs out of ink. In both cases, this testing reduces the remaining ink in the pen and thus the utility of selecting it. Despite this significant lack of information, we show that it is possible to approximately maximize our utility up to an $O(\log n)$ factor. Formally, we consider two different setups: the "prophet" setting, in which each $X_i$ is independently drawn from some distribution $\mathcal{D}i$, and the "secretary" setting, in which $(X_i){i=1}n$ is a random permutation of arbitrary $a_1, a_2, \ldots, a_n$. We derive the optimal competitive ratios in both settings up to constant factors. Our algorithms are surprisingly robust: (1) In the prophet setting, we only require one sample from each $\mathcal{D}_i$, rather than a full description of the distribution; (2) In the secretary setting, the algorithm also succeeds under an arbitrary permutation, if an estimate of the maximum $a_i$ is given. Our techniques include a non-trivial online sampling scheme from a sequence with an unknown length, as well as the construction of a hard, non-uniform distribution over permutations. Both might be of independent interest. We also highlight some immediate open problems and discuss several directions for future research.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.