Papers
Topics
Authors
Recent
Search
2000 character limit reached

Saving the Limping: Fault-tolerant Quadruped Locomotion via Reinforcement Learning

Published 2 Oct 2022 in cs.RO | (2210.00474v3)

Abstract: Modern quadrupeds are skillful in traversing or even sprinting on uneven terrains in a remote uncontrolled environment. However, survival in the wild requires not only maneuverability, but also the ability to handle potential critical hardware failures. How to grant such ability to quadrupeds is rarely investigated. In this paper, we propose a novel methodology to train and test hardware fault-tolerant controllers for quadruped locomotion, both in the simulation and physical world. We adopt the teacher-student reinforcement learning framework to train the controller with close-to-reality joint-locking failure in the simulation, which can be zero-shot transferred to the physical robot without any fine-tuning. Extensive experiments show that our fault-tolerant controller can efficiently lead a quadruped stably when it faces joint failures during locomotion.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.