2000 character limit reached
On the structure of even $K$-groups of rings of algebraic integers (2210.00168v2)
Published 1 Oct 2022 in math.NT
Abstract: In this paper, we describe the higher even $K$-groups of the ring of integers of a number field in terms of class groups of an appropriate extension of the number field in question. This is a natural extension of the previous collective works of Browkin, Keune and Kolster, where they considered the case of $K_2$. We then revisit the Kummer's criterion of totally real fields as generalized by Greenberg and Kida. In particular, we give an algebraic $K$-theoretical formulation of this criterion which we will prove using the algebraic $K$-theoretical results developed here.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.