2000 character limit reached
Two Invertible Networks for the Matrix Element Method (2210.00019v5)
Published 30 Sep 2022 in hep-ph
Abstract: The matrix element method is widely considered the ultimate LHC inference tool for small event numbers. We show how a combination of two conditional generative neural networks encodes the QCD radiation and detector effects without any simplifying assumptions, while keeping the computation of likelihoods for individual events numerically efficient. We illustrate our approach for the CP-violating phase of the top Yukawa coupling in associated Higgs and single-top production. Currently, the limiting factor for the precision of our approach is jet combinatorics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.