Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

An Obstruction Theory for the Existence of Maurer-Cartan Elements in curved $L_\infty$-algebras and an Application in Intrinsic Formality of $P_\infty$-Algebras (2209.15538v1)

Published 30 Sep 2022 in math.AT, math.CT, math.QA, and math.RA

Abstract: Let $\mathfrak{g}$ be a curved $L_\infty$-algebra endowed with a complete filtration $\mathfrak{F}\mathfrak{g}$. Suppose there exists an integer $r \in \mathbb{N}0$ for which the curvature $\mu_0$ satisfies $\mu_0 \in \mathfrak{F}{2r+1} \mathfrak{g}$ and the spectral sequence yields $E_{r+1}{p,q} =0$ for $p,q$ with $p+q=2$. We prove that then a Maurer-Cartan element exists. In addition, we show, as a typical application, that for $P$ a possibly inhomogeneous Koszul operad with generating set in arities 1,2 (e.g. $P$=Com,As,BV,Lie,Ger), a $P_\infty$-algebra $A$ is intrinsically formal if its twisted deformation complex $\mathrm{Def}(H(A)\stackrel{\mathrm{id}}{\to} H(A))$ is acyclic in total degree 1.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.