A unified approach to shape and topological sensitivity analysis of discretized optimal design problems (2209.15491v1)
Abstract: We introduce a unified sensitivity concept for shape and topological perturbations and perform the sensitivity analysis for a discretized PDE-constrained design optimization problem in two space dimensions. We assume that the design is represented by a piecewise linear and globally continuous level set function on a fixed finite element mesh and relate perturbations of the level set function to perturbations of the shape or topology of the corresponding design. We illustrate the sensitivity analysis for a problem that is constrained by a reaction-diffusion equation and draw connections between our discrete sensitivities and the well-established continuous concepts of shape and topological derivatives. Finally, we verify our sensitivities and illustrate their application in a level-set-based design optimization algorithm where no distinction between shape and topological updates has to be made.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.