Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hard thresholding hyperinterpolation over general regions (2209.14634v4)

Published 29 Sep 2022 in math.NA and cs.NA

Abstract: This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree $n$ leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function by a quadrature rule with algebraic exactness $2n$. We prove that hard thresholding hyperinterpolation is the unique solution to an $\ell_0$-regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the $L_2$ errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.