Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the quadrature exactness in hyperinterpolation (2202.13691v3)

Published 28 Feb 2022 in math.NA and cs.NA

Abstract: This paper investigates the role of quadrature exactness in the approximation scheme of hyperinterpolation. Constructing a hyperinterpolant of degree $n$ requires a positive-weight quadrature rule with exactness degree $2n$. We examine the behavior of such approximation when the required exactness degree $2n$ is relaxed to $n+k$ with $0<k\leq n$. Aided by the Marcinkiewicz--Zygmund inequality, we affirm that the $L2$ norm of the exactness-relaxing hyperinterpolation operator is bounded by a constant independent of $n$, and this approximation scheme is convergent as $n\rightarrow\infty$ if $k$ is positively correlated to $n$. Thus, the family of candidate quadrature rules for constructing hyperinterpolants can be significantly enriched, and the number of quadrature points can be considerably reduced. As a potential cost, this relaxation may slow the convergence rate of hyperinterpolation in terms of the reduced degrees of quadrature exactness. Our theoretical results are asserted by numerical experiments on three of the best-known quadrature rules: the Gauss quadrature, the Clenshaw--Curtis quadrature, and the spherical $t$-designs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.