Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rectified Flow: A Marginal Preserving Approach to Optimal Transport

Published 29 Sep 2022 in stat.ML and cs.LG | (2209.14577v1)

Abstract: We present a flow-based approach to the optimal transport (OT) problem between two continuous distributions $\pi_0,\pi_1$ on $\mathbb{R}d$, of minimizing a transport cost $\mathbb{E}[c(X_1-X_0)]$ in the set of couplings $(X_0,X_1)$ whose marginal distributions on $X_0,X_1$ equals $\pi_0,\pi_1$, respectively, where $c$ is a cost function. Our method iteratively constructs a sequence of neural ordinary differentiable equations (ODE), each learned by solving a simple unconstrained regression problem, which monotonically reduce the transport cost while automatically preserving the marginal constraints. This yields a monotonic interior approach that traverses inside the set of valid couplings to decrease the transport cost, which distinguishes itself from most existing approaches that enforce the coupling constraints from the outside. The main idea of the method draws from rectified flow, a recent approach that simultaneously decreases the whole family of transport costs induced by convex functions $c$ (and is hence multi-objective in nature), but is not tailored to minimize a specific transport cost. Our method is a single-object variant of rectified flow that guarantees to solve the OT problem for a fixed, user-specified convex cost function $c$.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 4 likes about this paper.