Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

pyerrors: a python framework for error analysis of Monte Carlo data (2209.14371v2)

Published 28 Sep 2022 in hep-lat, physics.comp-ph, and physics.data-an

Abstract: We present the pyerrors python package for statistical error analysis of Monte Carlo data. Linear error propagation using automatic differentiation in an object oriented framework is combined with the $\Gamma$-method for a reliable estimation of autocorrelation times. Data from different sources can easily be combined, keeping the information on the origin of error components intact throughout the analysis. pyerrors can be smoothly integrated into the existing scientific python ecosystem which allows for efficient and compact analyses.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.