Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Brunn--Minkowski inequality implies the CD condition in weighted Riemannian manifolds

Published 27 Sep 2022 in math.DG and math.MG | (2209.13424v1)

Abstract: The curvature dimension condition CD(K,N), pioneered by Sturm and Lott--Villani, is a synthetic notion of having curvature bounded below and dimension bounded above, in the non-smooth setting. This condition implies a suitable generalization of the Brunn--Minkowski inequality, denoted by BM(K,N). In this paper, we address the converse implication in the setting of weighted Riemannian manifolds, proving that BM(K,N) is in fact equivalent to CD(K,N). Our result allows to characterize the curvature dimension condition without using neither the optimal transport nor the differential structure of the manifold.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.