Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analog Image Denoising with an Adaptive Memristive Crossbar Network

Published 25 Sep 2022 in eess.IV | (2209.12259v1)

Abstract: Noise in image sensors led to the development of a whole range of denoising filters. A noisy image can become hard to recognize and often require several types of post-processing compensation circuits. This paper proposes an adaptive denoising system implemented using an analog in-memory neural computing network. The proposed method can learn new noises and can be integrated into or alone with CMOS image sensors. Three denoising network configurations are implemented namely, (1) single layer network, (2) convolution network, and (3) fusion network. The single layer network shows the processing time, energy consumption, and on-chip area of 3.2us, 21nJ per image, and 0.3mm2 respectively, meanwhile, the convolution denoising network correspondingly shows 72ms, 236uJ, and 0.48mm2. Among all the implemented networks, it is observed that performance metrics SSIM, MSE, and PSNR show a maximum improvement of 3.61, 21.7, and 7.7 times respectively.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.