Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised domain adaptation for speech recognition with unsupervised error correction (2209.12043v1)

Published 24 Sep 2022 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: The transcription quality of automatic speech recognition (ASR) systems degrades significantly when transcribing audios coming from unseen domains. We propose an unsupervised error correction method for unsupervised ASR domain adaption, aiming to recover transcription errors caused by domain mismatch. Unlike existing correction methods that rely on transcribed audios for training, our approach requires only unlabeled data of the target domains in which a pseudo-labeling technique is applied to generate correction training samples. To reduce over-fitting to the pseudo data, we also propose an encoder-decoder correction model that can take into account additional information such as dialogue context and acoustic features. Experiment results show that our method obtains a significant word error rate (WER) reduction over non-adapted ASR systems. The correction model can also be applied on top of other adaptation approaches to bring an additional improvement of 10% relatively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Long Mai (32 papers)
  2. Julie Carson-Berndsen (5 papers)
Citations (7)