Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NWPU-ASLP System for the VoicePrivacy 2022 Challenge (2209.11969v1)

Published 24 Sep 2022 in eess.AS and cs.SD

Abstract: This paper presents the NWPU-ASLP speaker anonymization system for VoicePrivacy 2022 Challenge. Our submission does not involve additional Automatic Speaker Verification (ASV) model or x-vector pool. Our system consists of four modules, including feature extractor, acoustic model, anonymization module, and neural vocoder. First, the feature extractor extracts the Phonetic Posteriorgram (PPG) and pitch from the input speech signal. Then, we reserve a pseudo speaker ID from a speaker look-up table (LUT), which is subsequently fed into a speaker encoder to generate the pseudo speaker embedding that is not corresponding to any real speaker. To ensure the pseudo speaker is distinguishable, we further average the randomly selected speaker embedding and weighted concatenate it with the pseudo speaker embedding to generate the anonymized speaker embedding. Finally, the acoustic model outputs the anonymized mel-spectrogram from the anonymized speaker embedding and a modified version of HifiGAN transforms the mel-spectrogram into the anonymized speech waveform. Experimental results demonstrate the effectiveness of our proposed anonymization system.

Citations (14)

Summary

We haven't generated a summary for this paper yet.