Quantifying the dissipation enhancement of cellular flows (2209.11645v2)
Abstract: We study the dissipation enhancement by cellular flows. Previous work by Iyer, Xu, and Zlato\v{s} produces a family of cellular flows that can enhance dissipation by an arbitrarily large amount. We improve this result by providing quantitative bounds on the dissipation enhancement in terms of the flow amplitude, cell size and diffusivity. Explicitly we show that the mixing time is bounded by the exit time from one cell when the flow amplitude is large enough, and by the reciprocal of the effective diffusivity when the flow amplitude is small. This agrees with the optimal heuristics. We also prove a general result relating the dissipation time of incompressible flows to the mixing time. The main idea behind the proof is to study the dynamics probabilistically and construct a successful coupling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.