Papers
Topics
Authors
Recent
Search
2000 character limit reached

Environment Optimization for Multi-Agent Navigation

Published 22 Sep 2022 in cs.RO, cs.LG, and cs.MA | (2209.11279v1)

Abstract: Traditional approaches to the design of multi-agent navigation algorithms consider the environment as a fixed constraint, despite the obvious influence of spatial constraints on agents' performance. Yet hand-designing improved environment layouts and structures is inefficient and potentially expensive. The goal of this paper is to consider the environment as a decision variable in a system-level optimization problem, where both agent performance and environment cost can be accounted for. We begin by proposing a novel environment optimization problem. We show, through formal proofs, under which conditions the environment can change while guaranteeing completeness (i.e., all agents reach their navigation goals). Our solution leverages a model-free reinforcement learning approach. In order to accommodate a broad range of implementation scenarios, we include both online and offline optimization, and both discrete and continuous environment representations. Numerical results corroborate our theoretical findings and validate our approach.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.