Equilibrium states for the classical Lorenz attractor and sectional-hyperbolic attractors in higher dimensions
Abstract: It has long been conjectured that the classical Lorenz attractor supports a unique measure of maximal entropy. In this article, we give a positive answer to this conjecture and its higher-dimensional counterpart by considering the uniqueness of equilibrium states for H\"older continuous functions on a sectional-hyperbolic attractor $\Lambda$. We prove that in a $C1$-open and dense family of vector fields (including the classical Lorenz attractor), if the point masses at singularities are not equilibrium states, then there exists a unique equilibrium state supported on $\Lambda$. In particular, there exists a unique measure of maximal entropy for the flow $X|_\Lambda$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.