Stochastic equations and dynamics beyond mean-field theory
Abstract: The dynamical transition occurring in spin-glass models with one step of Replica-Symmetry-Breaking is a mean-field artifact that disappears in finite systems and/or in finite dimensions. The critical fluctuations that smooth the transition are described in the $\beta$ regime by dynamical stochastic equations. The quantitative parameters of the dynamical stochastic equations have been computed analytically on the 3-spin Bethe lattice Spin-Glass by means of the (static) cavity method and the equations have been solved numerically. The resulting parameter-free dynamical predictions are shown here to be in excellent agreement with numerical simulation data for the correlation and its fluctuations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.