Papers
Topics
Authors
Recent
2000 character limit reached

Constructing Concise Characteristic Samples for Acceptors of Omega Regular Languages

Published 19 Sep 2022 in cs.FL | (2209.09336v6)

Abstract: A characteristic sample for a language $L$ and a learning algorithm $\textbf{L}$ is a finite sample of words $T_L$ labeled by their membership in $L$ such that for any sample $T \supseteq T_L$ consistent with $L$, on input $T$ the learning algorithm $\textbf{L}$ returns a hypothesis equivalent to $L$. Which omega automata have characteristic sets of polynomial size, and can these sets be constructed in polynomial time? We address these questions here. In brief, non-deterministic omega automata of any of the common types, in particular B\"uchi, do not have characteristic samples of polynomial size. For deterministic omega automata that are isomorphic to their right congruence automata, the fully informative languages, polynomial time algorithms for constructing characteristic samples and learning from them are given. The algorithms for constructing characteristic sets in polynomial time for the different omega automata (of types B\"uchi, coB\"uchi, parity, Rabin, Street, or Muller), require deterministic polynomial time algorithms for (1) equivalence of the respective omega automata, and (2) testing membership of the language of the automaton in the informative classes, which we provide.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.