Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Scaling Properties for Two-State Problems and for a Singularly Perturbed $T_3$ Structure (2209.09309v3)

Published 19 Sep 2022 in math.AP

Abstract: In this article we study quantitative rigidity properties for the compatible and incompatible two-state problems for suitable classes of $\mathcal{A}$-free operators and for a singularly perturbed $T_3$-structure for the divergence operator. In particular, in the compatible setting of the two-state problem we prove that all homogeneous, first order, linear operators with affine boundary data which enforce oscillations yield the typical $\epsilon{\frac{2}{3}}$-lower scaling bounds. As observed in \cite{CC15} for higher order operators this may no longer be the case. Revisiting the example from \cite{CC15}, we show that this is reflected in the structure of the associated symbols and that this can be exploited for a new Fourier based proof of the lower scaling bound. Moreover, building on \cite{RT22, GN04, PP04}, we discuss the scaling behaviour of a $T_3$ structure for the divergence operator. We prove that as in \cite{RT22} this yields a non-algebraic scaling law.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.