Papers
Topics
Authors
Recent
2000 character limit reached

Portable Multi-Hypothesis Monte Carlo Localization for Mobile Robots

Published 15 Sep 2022 in cs.RO | (2209.07586v1)

Abstract: Self-localization is a fundamental capability that mobile robot navigation systems integrate to move from one point to another using a map. Thus, any enhancement in localization accuracy is crucial to perform delicate dexterity tasks. This paper describes a new location that maintains several populations of particles using the Monte Carlo Localization (MCL) algorithm, always choosing the best one as the sytems's output. As novelties, our work includes a multi-scale match matching algorithm to create new MCL populations and a metric to determine the most reliable. It also contributes the state-of-the-art implementations, enhancing recovery times from erroneous estimates or unknown initial positions. The proposed method is evaluated in ROS2 in a module fully integrated with Nav2 and compared with the current state-of-the-art Adaptive ACML solution, obtaining good accuracy and recovery times.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.