Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pixel-wise classification in graphene-detection with tree-based machine learning algorithms (2209.07578v1)

Published 24 Aug 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: Mechanical exfoliation of graphene and its identification by optical inspection is one of the milestones in condensed matter physics that sparked the field of 2D materials. Finding regions of interest from the entire sample space and identification of layer number is a routine task potentially amenable to automatization. We propose supervised pixel-wise classification methods showing a high performance even with a small number of training image datasets that require short computational time without GPU. We introduce four different tree-based machine learning algorithms -- decision tree, random forest, extreme gradient boost, and light gradient boosting machine. We train them with five optical microscopy images of graphene, and evaluate their performances with multiple metrics and indices. We also discuss combinatorial machine learning models between the three single classifiers and assess their performances in identification and reliability. The code developed in this paper is open to the public and will be released at github.com/gjung-group/Graphene_segmentation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.